Gyro heading added to swerve drive structure and implemented it to the visualization
This commit is contained in:
@ -92,6 +92,8 @@
|
||||
<div id="current-config-info" class="config-info">
|
||||
Current Configuration: <strong id="config-name">4-Wheel Rectangle</strong>
|
||||
(<span id="module-count-display">4</span> modules)
|
||||
<br>
|
||||
Gyro Heading: <strong id="gyro-heading-display">0.0°</strong>
|
||||
</div>
|
||||
<div class="module-grid" id="module-grid">
|
||||
<!-- Dynamically generated module data will appear here -->
|
||||
|
||||
75
script.js
75
script.js
@ -28,19 +28,27 @@ class SwerveModule {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
calculateState(velocityX, velocityY, turnSpeed) {
|
||||
calculateState(velocityX, velocityY, turnSpeed, heading = 0) {
|
||||
// Take the requested speed and turn rate of the robot and calculate
|
||||
// speed and angle of this module to achieve it
|
||||
|
||||
// Transform field-relative velocities to robot-relative velocities
|
||||
// by rotating the velocity vector by the negative of the robot's heading
|
||||
const cosHeading = Math.cos(-heading);
|
||||
const sinHeading = Math.sin(-heading);
|
||||
|
||||
const robotVelX = velocityX * cosHeading - velocityY * sinHeading;
|
||||
const robotVelY = velocityX * sinHeading + velocityY * cosHeading;
|
||||
|
||||
// Calculate rotation contribution (perpendicular to position vector)
|
||||
const rotX = -this.position.y * turnSpeed;
|
||||
const rotY = this.position.x * turnSpeed;
|
||||
|
||||
// Combine translation and rotation
|
||||
this.velocity.x = velocityX + rotX;
|
||||
this.velocity.y = velocityY + rotY;
|
||||
// Combine translation and rotation (now in robot frame)
|
||||
this.velocity.x = robotVelX + rotX;
|
||||
this.velocity.y = robotVelY + rotY;
|
||||
|
||||
// Calculate speed and angle
|
||||
// Calculate speed and angle (in robot frame)
|
||||
this.speed = this.velocity.magnitude();
|
||||
this.angle = this.velocity.angle();
|
||||
}
|
||||
@ -51,6 +59,7 @@ class SwerveDrive {
|
||||
constructor(modulePositionsAndNames, robotName) {
|
||||
this.setModules(modulePositionsAndNames);
|
||||
this.setName(robotName);
|
||||
this.gyroHeading = 0; // Simulated gyro heading in radians
|
||||
}
|
||||
|
||||
setName(robotName) {
|
||||
@ -64,10 +73,23 @@ class SwerveDrive {
|
||||
);
|
||||
}
|
||||
|
||||
drive(velocityX, velocityY, turnSpeed, maxModuleSpeed) {
|
||||
updateHeading(turnSpeed, deltaTime = 0.01) {
|
||||
// Integrate turn speed to update gyro heading
|
||||
// turnSpeed is in radians/second, deltaTime is the time step
|
||||
this.gyroHeading += turnSpeed * deltaTime;
|
||||
|
||||
// Normalize to -PI to PI range
|
||||
while (this.gyroHeading > Math.PI) this.gyroHeading -= 2 * Math.PI;
|
||||
while (this.gyroHeading < -Math.PI) this.gyroHeading += 2 * Math.PI;
|
||||
}
|
||||
|
||||
drive(velocityX, velocityY, turnSpeed, maxModuleSpeed, deltaTime = 0.01) {
|
||||
// Update gyro heading first
|
||||
this.updateHeading(turnSpeed, deltaTime);
|
||||
|
||||
// Take in a requested speeds and update every module
|
||||
this.modules.forEach(module =>
|
||||
module.calculateState(velocityX, velocityY, turnSpeed)
|
||||
module.calculateState(velocityX, velocityY, turnSpeed, this.gyroHeading)
|
||||
);
|
||||
|
||||
// If any speeds exceed the max speed, normalize down so we don't effect movement direction
|
||||
@ -369,6 +391,13 @@ function updateModuleDisplays(robot) {
|
||||
const moduleCount = document.getElementById('module-count-display');
|
||||
moduleCount.textContent = robot.modules.length;
|
||||
|
||||
// Update gyro heading display
|
||||
const gyroHeadingDisplay = document.getElementById('gyro-heading-display');
|
||||
if (gyroHeadingDisplay) {
|
||||
const headingDeg = (robot.gyroHeading * 180 / Math.PI).toFixed(1);
|
||||
gyroHeadingDisplay.textContent = `${headingDeg}°`;
|
||||
}
|
||||
|
||||
const modules = robot.modules;
|
||||
modules.forEach((module, i) => {
|
||||
const angleElement = document.getElementById(`module-${i}-angle`);
|
||||
@ -394,12 +423,9 @@ const ctx = canvas.getContext('2d');
|
||||
// Get CSS variables for use in canvas
|
||||
const rootStyles = getComputedStyle(document.documentElement);
|
||||
|
||||
function drawGrid(ctx, sideLength, gridSquareSize, xOffset, yOffset, rotation) {
|
||||
function drawGrid(ctx, sideLength, gridSquareSize, xOffset, yOffset) {
|
||||
ctx.save();
|
||||
|
||||
// Apply rotation transform
|
||||
ctx.rotate(-rotation);
|
||||
|
||||
ctx.strokeStyle = rootStyles.getPropertyValue('--grid-color');
|
||||
ctx.lineWidth = 1;
|
||||
const startX = (-sideLength / 2) - xOffset;
|
||||
@ -463,7 +489,11 @@ function drawModule(ctx, module) {
|
||||
ctx.restore();
|
||||
}
|
||||
|
||||
function drawRobot(ctx, robot) {
|
||||
function drawRobot(ctx, robot, heading) {
|
||||
ctx.save(); // Save current state before rotation
|
||||
|
||||
ctx.rotate(heading);
|
||||
|
||||
ctx.strokeStyle = rootStyles.getPropertyValue('--robot-frame-color')
|
||||
ctx.fillStyle = rootStyles.getPropertyValue('--robot-fill-color');
|
||||
ctx.lineWidth = 4;
|
||||
@ -480,6 +510,8 @@ function drawRobot(ctx, robot) {
|
||||
ctx.stroke();
|
||||
|
||||
modules.forEach(module => drawModule(ctx, module));
|
||||
|
||||
ctx.restore(); // Restore to remove rotation
|
||||
}
|
||||
|
||||
|
||||
@ -491,9 +523,8 @@ createModuleDisplays(robot);
|
||||
let xSpeed = 0;
|
||||
let ySpeed = 0;
|
||||
let turnSpeed = -1;
|
||||
let robotRotation = 0; // Track cumulative robot rotation for grid display
|
||||
|
||||
let gridSquareSize = 25;
|
||||
let gridSquareSize = 50;
|
||||
let xGridOffset = 0;
|
||||
let yGridOffset = 0;
|
||||
robot.drive(xSpeed, ySpeed, 0, 500);
|
||||
@ -511,26 +542,20 @@ function animate() {
|
||||
|
||||
// Animate the grid with robot movement
|
||||
let offsetSpeedDivisor = (100 - gridSquareSize <= 0 ? 1 : 100 - gridSquareSize);
|
||||
robotRotation += turnSpeed * 0.01; // Scale factor for reasonable rotation speed
|
||||
|
||||
// Convert robot velocities to world velocities for grid movement
|
||||
const cosRot = Math.cos(robotRotation);
|
||||
const sinRot = Math.sin(robotRotation);
|
||||
const worldVx = xSpeed * cosRot - ySpeed * sinRot;
|
||||
const worldVy = xSpeed * sinRot + ySpeed * cosRot;
|
||||
|
||||
// Update grid offsets based on robot movement
|
||||
xGridOffset = (xGridOffset + (worldVx / offsetSpeedDivisor)) % gridSquareSize;
|
||||
yGridOffset = (yGridOffset + (worldVy / offsetSpeedDivisor)) % gridSquareSize;
|
||||
xGridOffset = (xGridOffset + (xSpeed / offsetSpeedDivisor)) % gridSquareSize;
|
||||
yGridOffset = (yGridOffset + (ySpeed / offsetSpeedDivisor)) % gridSquareSize;
|
||||
|
||||
// Update module states before drawing the robot
|
||||
// The drive() method will update the gyroHeading internally
|
||||
robot.drive(xSpeed, ySpeed, turnSpeed, parseFloat(maxSpeedSlider.value));
|
||||
updateModuleDisplays(robot);
|
||||
|
||||
// Draw the robot and it's movement. Grid should be oversized so movement
|
||||
// doesn't find the edge of the grid
|
||||
drawGrid(ctx, canvas.width * 2, gridSquareSize, xGridOffset, yGridOffset, robotRotation);
|
||||
drawRobot(ctx, robot);
|
||||
drawGrid(ctx, canvas.width * 2, gridSquareSize, xGridOffset, yGridOffset);
|
||||
drawRobot(ctx, robot, robot.gyroHeading);
|
||||
|
||||
// Do it all over again
|
||||
ctx.restore();
|
||||
|
||||
Reference in New Issue
Block a user