2 Commits

2 changed files with 53 additions and 26 deletions

View File

@ -92,6 +92,8 @@
<div id="current-config-info" class="config-info"> <div id="current-config-info" class="config-info">
Current Configuration: <strong id="config-name">4-Wheel Rectangle</strong> Current Configuration: <strong id="config-name">4-Wheel Rectangle</strong>
(<span id="module-count-display">4</span> modules) (<span id="module-count-display">4</span> modules)
<br>
Gyro Heading: <strong id="gyro-heading-display">0.0°</strong>
</div> </div>
<div class="module-grid" id="module-grid"> <div class="module-grid" id="module-grid">
<!-- Dynamically generated module data will appear here --> <!-- Dynamically generated module data will appear here -->

View File

@ -28,19 +28,27 @@ class SwerveModule {
this.name = name; this.name = name;
} }
calculateState(velocityX, velocityY, turnSpeed) { calculateState(velocityX, velocityY, turnSpeed, heading = 0) {
// Take the requested speed and turn rate of the robot and calculate // Take the requested speed and turn rate of the robot and calculate
// speed and angle of this module to achieve it // speed and angle of this module to achieve it
// Transform field-relative velocities to robot-relative velocities
// by rotating the velocity vector by the negative of the robot's heading
const cosHeading = Math.cos(-heading);
const sinHeading = Math.sin(-heading);
const robotVelX = velocityX * cosHeading - velocityY * sinHeading;
const robotVelY = velocityX * sinHeading + velocityY * cosHeading;
// Calculate rotation contribution (perpendicular to position vector) // Calculate rotation contribution (perpendicular to position vector)
const rotX = -this.position.y * turnSpeed; const rotX = -this.position.y * turnSpeed;
const rotY = this.position.x * turnSpeed; const rotY = this.position.x * turnSpeed;
// Combine translation and rotation // Combine translation and rotation (now in robot frame)
this.velocity.x = velocityX + rotX; this.velocity.x = robotVelX + rotX;
this.velocity.y = velocityY + rotY; this.velocity.y = robotVelY + rotY;
// Calculate speed and angle // Calculate speed and angle (in robot frame)
this.speed = this.velocity.magnitude(); this.speed = this.velocity.magnitude();
this.angle = this.velocity.angle(); this.angle = this.velocity.angle();
} }
@ -51,6 +59,7 @@ class SwerveDrive {
constructor(modulePositionsAndNames, robotName) { constructor(modulePositionsAndNames, robotName) {
this.setModules(modulePositionsAndNames); this.setModules(modulePositionsAndNames);
this.setName(robotName); this.setName(robotName);
this.gyroHeading = 0; // Simulated gyro heading in radians
} }
setName(robotName) { setName(robotName) {
@ -64,10 +73,23 @@ class SwerveDrive {
); );
} }
drive(velocityX, velocityY, turnSpeed, maxModuleSpeed) { updateHeading(turnSpeed, deltaTime = 0.01) {
// Integrate turn speed to update gyro heading
// turnSpeed is in radians/second, deltaTime is the time step
this.gyroHeading += turnSpeed * deltaTime;
// Normalize to -PI to PI range
while (this.gyroHeading > Math.PI) this.gyroHeading -= 2 * Math.PI;
while (this.gyroHeading < -Math.PI) this.gyroHeading += 2 * Math.PI;
}
drive(velocityX, velocityY, turnSpeed, maxModuleSpeed, deltaTime = 0.01) {
// Update gyro heading first
this.updateHeading(turnSpeed, deltaTime);
// Take in a requested speeds and update every module // Take in a requested speeds and update every module
this.modules.forEach(module => this.modules.forEach(module =>
module.calculateState(velocityX, velocityY, turnSpeed) module.calculateState(velocityX, velocityY, turnSpeed, this.gyroHeading)
); );
// If any speeds exceed the max speed, normalize down so we don't effect movement direction // If any speeds exceed the max speed, normalize down so we don't effect movement direction
@ -271,7 +293,7 @@ generateInputsBtn.addEventListener('click', () => {
const count = parseInt(moduleCountInput.value); const count = parseInt(moduleCountInput.value);
if (isNaN(count) || count < 2) { if (isNaN(count) || count < 2) {
alert('Please enter a valid number of modules between 2 and 12.'); alert('Please enter a valid number of modules above or equal to 2.');
return; return;
} }
generateModuleInputs(count); generateModuleInputs(count);
@ -369,6 +391,13 @@ function updateModuleDisplays(robot) {
const moduleCount = document.getElementById('module-count-display'); const moduleCount = document.getElementById('module-count-display');
moduleCount.textContent = robot.modules.length; moduleCount.textContent = robot.modules.length;
// Update gyro heading display
const gyroHeadingDisplay = document.getElementById('gyro-heading-display');
if (gyroHeadingDisplay) {
const headingDeg = (robot.gyroHeading * 180 / Math.PI).toFixed(1);
gyroHeadingDisplay.textContent = `${headingDeg}°`;
}
const modules = robot.modules; const modules = robot.modules;
modules.forEach((module, i) => { modules.forEach((module, i) => {
const angleElement = document.getElementById(`module-${i}-angle`); const angleElement = document.getElementById(`module-${i}-angle`);
@ -394,12 +423,9 @@ const ctx = canvas.getContext('2d');
// Get CSS variables for use in canvas // Get CSS variables for use in canvas
const rootStyles = getComputedStyle(document.documentElement); const rootStyles = getComputedStyle(document.documentElement);
function drawGrid(ctx, sideLength, gridSquareSize, xOffset, yOffset, rotation) { function drawGrid(ctx, sideLength, gridSquareSize, xOffset, yOffset) {
ctx.save(); ctx.save();
// Apply rotation transform
ctx.rotate(-rotation);
ctx.strokeStyle = rootStyles.getPropertyValue('--grid-color'); ctx.strokeStyle = rootStyles.getPropertyValue('--grid-color');
ctx.lineWidth = 1; ctx.lineWidth = 1;
const startX = (-sideLength / 2) - xOffset; const startX = (-sideLength / 2) - xOffset;
@ -463,7 +489,11 @@ function drawModule(ctx, module) {
ctx.restore(); ctx.restore();
} }
function drawRobot(ctx, robot) { function drawRobot(ctx, robot, heading) {
ctx.save(); // Save current state before rotation
ctx.rotate(heading);
ctx.strokeStyle = rootStyles.getPropertyValue('--robot-frame-color') ctx.strokeStyle = rootStyles.getPropertyValue('--robot-frame-color')
ctx.fillStyle = rootStyles.getPropertyValue('--robot-fill-color'); ctx.fillStyle = rootStyles.getPropertyValue('--robot-fill-color');
ctx.lineWidth = 4; ctx.lineWidth = 4;
@ -480,6 +510,8 @@ function drawRobot(ctx, robot) {
ctx.stroke(); ctx.stroke();
modules.forEach(module => drawModule(ctx, module)); modules.forEach(module => drawModule(ctx, module));
ctx.restore(); // Restore to remove rotation
} }
@ -491,9 +523,8 @@ createModuleDisplays(robot);
let xSpeed = 0; let xSpeed = 0;
let ySpeed = 0; let ySpeed = 0;
let turnSpeed = -1; let turnSpeed = -1;
let robotRotation = 0; // Track cumulative robot rotation for grid display
let gridSquareSize = 25; let gridSquareSize = 50;
let xGridOffset = 0; let xGridOffset = 0;
let yGridOffset = 0; let yGridOffset = 0;
robot.drive(xSpeed, ySpeed, 0, 500); robot.drive(xSpeed, ySpeed, 0, 500);
@ -511,26 +542,20 @@ function animate() {
// Animate the grid with robot movement // Animate the grid with robot movement
let offsetSpeedDivisor = (100 - gridSquareSize <= 0 ? 1 : 100 - gridSquareSize); let offsetSpeedDivisor = (100 - gridSquareSize <= 0 ? 1 : 100 - gridSquareSize);
robotRotation += turnSpeed * 0.01; // Scale factor for reasonable rotation speed
// Convert robot velocities to world velocities for grid movement
const cosRot = Math.cos(robotRotation);
const sinRot = Math.sin(robotRotation);
const worldVx = xSpeed * cosRot - ySpeed * sinRot;
const worldVy = xSpeed * sinRot + ySpeed * cosRot;
// Update grid offsets based on robot movement // Update grid offsets based on robot movement
xGridOffset = (xGridOffset + (worldVx / offsetSpeedDivisor)) % gridSquareSize; xGridOffset = (xGridOffset + (xSpeed / offsetSpeedDivisor)) % gridSquareSize;
yGridOffset = (yGridOffset + (worldVy / offsetSpeedDivisor)) % gridSquareSize; yGridOffset = (yGridOffset + (ySpeed / offsetSpeedDivisor)) % gridSquareSize;
// Update module states before drawing the robot // Update module states before drawing the robot
// The drive() method will update the gyroHeading internally
robot.drive(xSpeed, ySpeed, turnSpeed, parseFloat(maxSpeedSlider.value)); robot.drive(xSpeed, ySpeed, turnSpeed, parseFloat(maxSpeedSlider.value));
updateModuleDisplays(robot); updateModuleDisplays(robot);
// Draw the robot and it's movement. Grid should be oversized so movement // Draw the robot and it's movement. Grid should be oversized so movement
// doesn't find the edge of the grid // doesn't find the edge of the grid
drawGrid(ctx, canvas.width * 2, gridSquareSize, xGridOffset, yGridOffset, robotRotation); drawGrid(ctx, canvas.width * 2, gridSquareSize, xGridOffset, yGridOffset);
drawRobot(ctx, robot); drawRobot(ctx, robot, robot.gyroHeading);
// Do it all over again // Do it all over again
ctx.restore(); ctx.restore();