4 Commits

3 changed files with 314 additions and 35 deletions

View File

@ -67,6 +67,9 @@
<button id="preset-4rect" type="button">4-Wheel Rectangle</button>
<button id="preset-6wheel" type="button">6-Wheel Hexagon</button>
<button id="preset-8wheel" type="button">8-Wheel Octagon</button>
<button id="preset-8square" type="button">8-Wheel Square</button>
<button id="preset-12hex" type="button">12-Wheel Hexagon</button>
<button id="preset-16oct" type="button">16-Wheel Octogon</button>
</div>
</fieldset>
<fieldset>
@ -92,6 +95,8 @@
<div id="current-config-info" class="config-info">
Current Configuration: <strong id="config-name">4-Wheel Rectangle</strong>
(<span id="module-count-display">4</span> modules)
<br>
Gyro Heading: <strong id="gyro-heading-display">0.0°</strong>
</div>
<div class="module-grid" id="module-grid">
<!-- Dynamically generated module data will appear here -->
@ -108,7 +113,8 @@
</section>
</main>
<script src="script.js"></script>
<script type="module" src="vendor/lucio/graham-scan.mjs"></script>
<script type="module" src="script.js"></script>
</body>
</html>

193
script.js
View File

@ -2,6 +2,8 @@
* BEGIN CLASS DECLARATIONS
*/
import GrahamScan from "./vendor/lucio/graham-scan.mjs";
// 2D vector class to make some of the math easier
class Vec2D {
constructor(x, y) {
@ -28,19 +30,27 @@ class SwerveModule {
this.name = name;
}
calculateState(velocityX, velocityY, turnSpeed) {
calculateState(velocityX, velocityY, turnSpeed, heading = 0) {
// Take the requested speed and turn rate of the robot and calculate
// speed and angle of this module to achieve it
// Transform field-relative velocities to robot-relative velocities
// by rotating the velocity vector by the negative of the robot's heading
const cosHeading = Math.cos(-heading);
const sinHeading = Math.sin(-heading);
const robotVelX = velocityX * cosHeading - velocityY * sinHeading;
const robotVelY = velocityX * sinHeading + velocityY * cosHeading;
// Calculate rotation contribution (perpendicular to position vector)
const rotX = -this.position.y * turnSpeed;
const rotY = this.position.x * turnSpeed;
// Combine translation and rotation
this.velocity.x = velocityX + rotX;
this.velocity.y = velocityY + rotY;
// Combine translation and rotation (now in robot frame)
this.velocity.x = robotVelX + rotX;
this.velocity.y = robotVelY + rotY;
// Calculate speed and angle
// Calculate speed and angle (in robot frame)
this.speed = this.velocity.magnitude();
this.angle = this.velocity.angle();
}
@ -51,6 +61,7 @@ class SwerveDrive {
constructor(modulePositionsAndNames, robotName) {
this.setModules(modulePositionsAndNames);
this.setName(robotName);
this.gyroHeading = 0; // Simulated gyro heading in radians
}
setName(robotName) {
@ -64,10 +75,23 @@ class SwerveDrive {
);
}
drive(velocityX, velocityY, turnSpeed, maxModuleSpeed) {
updateHeading(turnSpeed, deltaTime = 0.01) {
// Integrate turn speed to update gyro heading
// turnSpeed is in radians/second, deltaTime is the time step
this.gyroHeading += turnSpeed * deltaTime;
// Normalize to -PI to PI range
while (this.gyroHeading > Math.PI) this.gyroHeading -= 2 * Math.PI;
while (this.gyroHeading < -Math.PI) this.gyroHeading += 2 * Math.PI;
}
drive(velocityX, velocityY, turnSpeed, maxModuleSpeed, deltaTime = 0.01) {
// Update gyro heading first
this.updateHeading(turnSpeed, deltaTime);
// Take in a requested speeds and update every module
this.modules.forEach(module =>
module.calculateState(velocityX, velocityY, turnSpeed)
module.calculateState(velocityX, velocityY, turnSpeed, this.gyroHeading)
);
// If any speeds exceed the max speed, normalize down so we don't effect movement direction
@ -135,7 +159,7 @@ const PresetConfigs = {
return modules;
},
eightWheel: (size) => {
eightWheelOctogon: (size) => {
const radius = size / 2;
const modules = [];
for (let i = 0; i < 8; i++) {
@ -147,7 +171,64 @@ const PresetConfigs = {
});
}
return modules;
}
},
eightWheelSquare: (size) => {
const full = size;
const half = size / 2;
return [
{ x: full, y: full, name: "Outer FL" },
{ x: full, y: -full, name: "Outer FR" },
{ x: -full, y: full, name: "Outer BL" },
{ x: -full, y: -full, name: "Outer BR" },
{ x: half, y: half, name: "Inner FL" },
{ x: half, y: -half, name: "Inner FR" },
{ x: -half, y: half, name: "Inner BL" },
{ x: -half, y: -half, name: "Inner BR" }
];
},
twelveWheelHexagon: (size) => {
const outerRadius = size;
const innerRadius = size / 2;
const modules = [];
for (let i = 0; i < 6; i++) {
const angle = (Math.PI / 2) + (i * Math.PI / 3);
modules.push({
x: outerRadius * Math.cos(angle),
y: outerRadius * Math.sin(angle),
name: `Module ${i + 1}`
});
modules.push({
x: innerRadius * Math.cos(angle),
y: innerRadius * Math.sin(angle),
name: `Module ${i + 7}`
});
}
return modules;
},
sixteenWheelOctogon: (size) => {
const outerRadius = size;
const innerRadius = size / 2;
const modules = [];
for (let i = 0; i < 8; i++) {
const angle = (Math.PI / 2) + (i * Math.PI / 4);
modules.push({
x: outerRadius * Math.cos(angle),
y: outerRadius * Math.sin(angle),
name: `Module ${i + 1}`
});
modules.push({
x: innerRadius * Math.cos(angle),
y: innerRadius * Math.sin(angle),
name: `Module ${i + 9}`
});
}
return modules;
},
};
/*
@ -181,6 +262,9 @@ const preset4WheelBtn = document.getElementById('preset-4wheel');
const preset4RectBtn = document.getElementById('preset-4rect');
const preset6WheelBtn = document.getElementById('preset-6wheel');
const preset8WheelBtn = document.getElementById('preset-8wheel');
const preset8SquareBtn = document.getElementById('preset-8square');
const preset12HexBtn = document.getElementById('preset-12hex');
const preset16OctBtn = document.getElementById('preset-16oct');
/*
* END DOM VARIABLES
@ -260,18 +344,44 @@ preset6WheelBtn.addEventListener('click', () => {
});
preset8WheelBtn.addEventListener('click', () => {
const positions = PresetConfigs.eightWheel(robotSize);
const positions = PresetConfigs.eightWheelOctogon(robotSize);
robot.setModules(positions);
robot.setName("8-Wheel Octogon");
createModuleDisplays(robot);
updateModuleDisplays(robot);
});
preset8SquareBtn.addEventListener('click', () => {
const positions = PresetConfigs.eightWheelSquare(robotSize);
robot.setModules(positions);
robot.setName("8-Wheel Square");
createModuleDisplays(robot);
updateModuleDisplays(robot);
});
preset12HexBtn.addEventListener('click', () => {
const positions = PresetConfigs.twelveWheelHexagon(robotSize);
robot.setModules(positions);
robot.setName("12-Wheel Hexagon");
createModuleDisplays(robot);
updateModuleDisplays(robot);
});
preset16OctBtn.addEventListener('click', () => {
const positions = PresetConfigs.sixteenWheelOctogon(robotSize);
robot.setModules(positions);
robot.setName("16-Wheel Octogon");
createModuleDisplays(robot);
updateModuleDisplays(robot);
});
generateInputsBtn.addEventListener('click', () => {
const count = parseInt(moduleCountInput.value);
if (isNaN(count) || count < 2) {
alert('Please enter a valid number of modules between 2 and 12.');
alert('Please enter a valid number of modules above or equal to 2.');
return;
}
generateModuleInputs(count);
@ -369,6 +479,13 @@ function updateModuleDisplays(robot) {
const moduleCount = document.getElementById('module-count-display');
moduleCount.textContent = robot.modules.length;
// Update gyro heading display
const gyroHeadingDisplay = document.getElementById('gyro-heading-display');
if (gyroHeadingDisplay) {
const headingDeg = (robot.gyroHeading * 180 / Math.PI).toFixed(1);
gyroHeadingDisplay.textContent = `${headingDeg}°`;
}
const modules = robot.modules;
modules.forEach((module, i) => {
const angleElement = document.getElementById(`module-${i}-angle`);
@ -394,12 +511,9 @@ const ctx = canvas.getContext('2d');
// Get CSS variables for use in canvas
const rootStyles = getComputedStyle(document.documentElement);
function drawGrid(ctx, sideLength, gridSquareSize, xOffset, yOffset, rotation) {
function drawGrid(ctx, sideLength, gridSquareSize, xOffset, yOffset) {
ctx.save();
// Apply rotation transform
ctx.rotate(-rotation);
ctx.strokeStyle = rootStyles.getPropertyValue('--grid-color');
ctx.lineWidth = 1;
const startX = (-sideLength / 2) - xOffset;
@ -463,23 +577,41 @@ function drawModule(ctx, module) {
ctx.restore();
}
function drawRobot(ctx, robot) {
function drawRobot(ctx, robot, heading) {
ctx.save(); // Save current state before rotation
ctx.rotate(heading);
ctx.strokeStyle = rootStyles.getPropertyValue('--robot-frame-color')
ctx.fillStyle = rootStyles.getPropertyValue('--robot-fill-color');
ctx.lineWidth = 4;
const modules = robot.modules.sort((a, b) => Math.atan2(a.position.y, a.position.x) - Math.atan2(b.position.y, b.position.x));
let hull = [];
// Get the convex hull of the robot if there are more than 3 modules
if (robot.modules.length > 3) {
const grahamScan = new GrahamScan();
grahamScan.setPoints(robot.modules.map((module) => [module.position.x, module.position.y]));
hull = grahamScan.getHull();
} else {
hull = robot.modules.map((module) => [module.position.x, module.position.y]);
}
// Draw the convex hull as the robot frame
ctx.beginPath();
ctx.moveTo(modules[0].position.x, modules[0].position.y);
for (let i = 1; i < modules.length; i++) {
ctx.lineTo(modules[i].position.x, modules[i].position.y);
ctx.moveTo(hull[0][0], hull[0][1]);
for (let i = 1; i < hull.length; i++) {
ctx.lineTo(hull[i][0], hull[i][1]);
}
ctx.closePath();
ctx.fill();
ctx.stroke();
modules.forEach(module => drawModule(ctx, module));
// Draw all modules (not just hull modules)
robot.modules.forEach(module => drawModule(ctx, module, heading));
ctx.restore(); // Restore to remove rotation
}
@ -491,9 +623,8 @@ createModuleDisplays(robot);
let xSpeed = 0;
let ySpeed = 0;
let turnSpeed = -1;
let robotRotation = 0; // Track cumulative robot rotation for grid display
let gridSquareSize = 25;
let gridSquareSize = 50;
let xGridOffset = 0;
let yGridOffset = 0;
robot.drive(xSpeed, ySpeed, 0, 500);
@ -511,26 +642,20 @@ function animate() {
// Animate the grid with robot movement
let offsetSpeedDivisor = (100 - gridSquareSize <= 0 ? 1 : 100 - gridSquareSize);
robotRotation += turnSpeed * 0.01; // Scale factor for reasonable rotation speed
// Convert robot velocities to world velocities for grid movement
const cosRot = Math.cos(robotRotation);
const sinRot = Math.sin(robotRotation);
const worldVx = xSpeed * cosRot - ySpeed * sinRot;
const worldVy = xSpeed * sinRot + ySpeed * cosRot;
// Update grid offsets based on robot movement
xGridOffset = (xGridOffset + (worldVx / offsetSpeedDivisor)) % gridSquareSize;
yGridOffset = (yGridOffset + (worldVy / offsetSpeedDivisor)) % gridSquareSize;
xGridOffset = (xGridOffset + (xSpeed / offsetSpeedDivisor)) % gridSquareSize;
yGridOffset = (yGridOffset + (ySpeed / offsetSpeedDivisor)) % gridSquareSize;
// Update module states before drawing the robot
// The drive() method will update the gyroHeading internally
robot.drive(xSpeed, ySpeed, turnSpeed, parseFloat(maxSpeedSlider.value));
updateModuleDisplays(robot);
// Draw the robot and it's movement. Grid should be oversized so movement
// doesn't find the edge of the grid
drawGrid(ctx, canvas.width * 2, gridSquareSize, xGridOffset, yGridOffset, robotRotation);
drawRobot(ctx, robot);
drawGrid(ctx, canvas.width * 2, gridSquareSize, xGridOffset, yGridOffset);
drawRobot(ctx, robot, robot.gyroHeading);
// Do it all over again
ctx.restore();

148
vendor/lucio/graham-scan.mjs vendored Normal file
View File

@ -0,0 +1,148 @@
/*
This module is not by me, it was found at the following github with MIT license:
https://github.com/luciopaiva/graham-scan/tree/master
=========
Copyright 2020 Lucio Paiva
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
=========
*/
const X = 0;
const Y = 1;
const REMOVED = -1;
export default class GrahamScan {
constructor() {
/** @type {[Number, Number][]} */
this.points = [];
}
clear() {
this.points = [];
}
getPoints() {
return this.points;
}
setPoints(points) {
this.points = points.slice(); // copy
}
addPoint(point) {
this.points.push(point);
}
/**
* Returns the smallest convex hull of a given set of points. Runs in O(n log n).
*
* @return {[Number, Number][]}
*/
getHull() {
const pivot = this.preparePivotPoint();
let indexes = Array.from(this.points, (point, i) => i);
const angles = Array.from(this.points, (point) => this.getAngle(pivot, point));
const distances = Array.from(this.points, (point) => this.euclideanDistanceSquared(pivot, point));
// sort by angle and distance
indexes.sort((i, j) => {
const angleA = angles[i];
const angleB = angles[j];
if (angleA === angleB) {
const distanceA = distances[i];
const distanceB = distances[j];
return distanceA - distanceB;
}
return angleA - angleB;
});
// remove points with repeated angle (but never the pivot, so start from i=1)
for (let i = 1; i < indexes.length - 1; i++) {
if (angles[indexes[i]] === angles[indexes[i + 1]]) { // next one has same angle and is farther
indexes[i] = REMOVED; // remove it logically to avoid O(n) operation to physically remove it
}
}
const hull = [];
for (let i = 0; i < indexes.length; i++) {
const index = indexes[i];
const point = this.points[index];
if (index !== REMOVED) {
if (hull.length < 3) {
hull.push(point);
} else {
while (this.checkOrientation(hull[hull.length - 2], hull[hull.length - 1], point) > 0) {
hull.pop();
}
hull.push(point);
}
}
}
return hull.length < 3 ? [] : hull;
}
/**
* Check the orientation of 3 points in the order given.
*
* It works by comparing the slope of P1->P2 vs P2->P3. If P1->P2 > P2->P3, orientation is clockwise; if
* P1->P2 < P2->P3, counter-clockwise. If P1->P2 == P2->P3, points are co-linear.
*
* @param {[Number, Number]} p1
* @param {[Number, Number]} p2
* @param {[Number, Number]} p3
* @return {Number} positive if orientation is clockwise, negative if counter-clockwise, 0 if co-linear
*/
checkOrientation(p1, p2, p3) {
return (p2[Y] - p1[Y]) * (p3[X] - p2[X]) - (p3[Y] - p2[Y]) * (p2[X] - p1[X]);
}
/**
* @private
* @param {[Number, Number]} a
* @param {[Number, Number]} b
* @return Number
*/
getAngle(a, b) {
return Math.atan2(b[Y] - a[Y], b[X] - a[X]);
}
/**
* @private
* @param {[Number, Number]} p1
* @param {[Number, Number]} p2
* @return {Number}
*/
euclideanDistanceSquared(p1, p2) {
const a = p2[X] - p1[X];
const b = p2[Y] - p1[Y];
return a * a + b * b;
}
/**
* @private
* @return {[Number, Number]}
*/
preparePivotPoint() {
let pivot = this.points[0];
let pivotIndex = 0;
for (let i = 1; i < this.points.length; i++) {
const point = this.points[i];
if (point[Y] < pivot[Y] || point[Y] === pivot[Y] && point[X] < pivot[X]) {
pivot = point;
pivotIndex = i;
}
}
return pivot;
}
}