13 Commits

8 changed files with 886 additions and 72 deletions

28
README.md Normal file
View File

@ -0,0 +1,28 @@
# MuneBase Swerve Sim
A browser-based simulator for Swerve Drive robots.
Live demo: https://swerve-vis.munebase.dev
You can host the project locally with a simple static server and open it in your browser:
- Python 3 (built-in):
python3 -m http.server 8000
Then open: http://localhost:8000
- Node.js (with npx):
npx http-server -c-1 .
Open `index.html` from the project root in your browser if your editor provides a static preview.
Notes
- Third-party scripts are in the `vendor/` directory.
License
This repository is provided as-is.

22
icons/192.svg Normal file
View File

@ -0,0 +1,22 @@
<svg width="192" height="192" xmlns="http://www.w3.org/2000/svg">
<rect width="192" height="192" fill="#16213e"/>
<circle cx="96" cy="96" r="70" fill="none" stroke="#0f3460" stroke-width="3"/>
<!-- Swerve modules (4 corners) -->
<circle cx="56" cy="56" r="12" fill="#e94560"/>
<circle cx="136" cy="56" r="12" fill="#e94560"/>
<circle cx="56" cy="136" r="12" fill="#e94560"/>
<circle cx="136" cy="136" r="12" fill="#e94560"/>
<!-- Velocity arrows -->
<line x1="56" y1="56" x2="56" y2="40" stroke="#ff6b6b" stroke-width="3" stroke-linecap="round"/>
<line x1="136" y1="56" x2="136" y2="40" stroke="#ff6b6b" stroke-width="3" stroke-linecap="round"/>
<line x1="56" y1="136" x2="56" y2="152" stroke="#ff6b6b" stroke-width="3" stroke-linecap="round"/>
<line x1="136" y1="136" x2="136" y2="152" stroke="#ff6b6b" stroke-width="3" stroke-linecap="round"/>
<!-- Center point -->
<circle cx="96" cy="96" r="6" fill="#4ecca3"/>
<!-- Robot frame -->
<polygon points="56,56 136,56 136,136 56,136" fill="none" stroke="#4ecca3" stroke-width="2"/>
</svg>

After

Width:  |  Height:  |  Size: 1.1 KiB

41
icons/512.svg Normal file
View File

@ -0,0 +1,41 @@
<svg width="512" height="512" xmlns="http://www.w3.org/2000/svg">
<rect width="512" height="512" fill="#16213e"/>
<circle cx="256" cy="256" r="190" fill="none" stroke="#0f3460" stroke-width="8"/>
<!-- Swerve modules (4 corners) -->
<circle cx="150" cy="150" r="32" fill="#e94560"/>
<circle cx="362" cy="150" r="32" fill="#e94560"/>
<circle cx="150" cy="362" r="32" fill="#e94560"/>
<circle cx="362" cy="362" r="32" fill="#e94560"/>
<!-- Velocity arrows -->
<line x1="150" y1="150" x2="150" y2="100" stroke="#ff6b6b" stroke-width="8" stroke-linecap="round"/>
<polygon points="150,90 140,110 160,110" fill="#ff6b6b"/>
<line x1="362" y1="150" x2="362" y2="100" stroke="#ff6b6b" stroke-width="8" stroke-linecap="round"/>
<polygon points="362,90 352,110 372,110" fill="#ff6b6b"/>
<line x1="150" y1="362" x2="150" y2="412" stroke="#ff6b6b" stroke-width="8" stroke-linecap="round"/>
<polygon points="150,422 140,402 160,402" fill="#ff6b6b"/>
<line x1="362" y1="362" x2="362" y2="412" stroke="#ff6b6b" stroke-width="8" stroke-linecap="round"/>
<polygon points="362,422 352,402 372,402" fill="#ff6b6b"/>
<!-- Center point -->
<circle cx="256" cy="256" r="16" fill="#4ecca3"/>
<!-- Robot frame -->
<polygon points="150,150 362,150 362,362 150,362" fill="none" stroke="#4ecca3" stroke-width="6"/>
<!-- Grid lines in background -->
<g opacity="0.2" stroke="#4ecca3" stroke-width="1">
<line x1="100" y1="100" x2="100" y2="412"/>
<line x1="200" y1="100" x2="200" y2="412"/>
<line x1="300" y1="100" x2="300" y2="412"/>
<line x1="400" y1="100" x2="400" y2="412"/>
<line x1="100" y1="100" x2="412" y2="100"/>
<line x1="100" y1="200" x2="412" y2="200"/>
<line x1="100" y1="300" x2="412" y2="300"/>
<line x1="100" y1="400" x2="412" y2="400"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 1.8 KiB

View File

@ -4,7 +4,15 @@
<head> <head>
<meta charset="UTF-8"> <meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="theme-color" content="#16213e">
<meta name="description"
content="Interactive simulation of a swerve drive robot with configurable size, speeds, and number of wheels">
<link rel="icon" type="image/svg+xml" href="/icons/512.svg">
<title>Swerve Drive Visualizer</title> <title>Swerve Drive Visualizer</title>
<!-- PWA Manifest -->
<link rel="manifest" href="/manifest.json">
<link rel="stylesheet" href="styles.css"> <link rel="stylesheet" href="styles.css">
</head> </head>
@ -14,6 +22,179 @@
<p>Interactive simulation of a swerve drive robot with configurable size, speeds, and number of wheels</p> <p>Interactive simulation of a swerve drive robot with configurable size, speeds, and number of wheels</p>
</header> </header>
<main> <main>
<section class="documentation">
<h2>About This Project</h2>
<details>
<summary>How To Use</summary>
<div class="documentation-content">
<h3>Getting Started</h3>
<p>This interactive visualizer demonstrates how a swerve drive robot moves based on commanded
velocities. Use the controls to experiment with different configurations and movement patterns.
</p>
<h3>Drive Controls</h3>
<ul>
<li><strong>Strafe Left/Right:</strong> Controls the robot's velocity in the X direction
(field-relative). Positive values move right, negative values move left.</li>
<li><strong>Move Forward/Backward:</strong> Controls the robot's velocity in the Y direction
(field-relative). Positive values move forward, negative values move backward.</li>
<li><strong>Rotation:</strong> Controls the robot's angular velocity (turn rate) in radians per
second. Positive values rotate counter-clockwise.</li>
<li><strong>Max Module Speed:</strong> Sets the maximum speed limit for any individual swerve
module. If calculated speeds exceed this, all modules are scaled proportionally.</li>
<li><strong>Reset Controls:</strong> Returns all velocity sliders to zero.</li>
</ul>
<h3>Preset Configurations</h3>
<p>Choose from 9 pre-built robot configurations ranging from 2 to 16 wheels. Each preset
demonstrates different module arrangements:</p>
<ul>
<li><strong>2-Wheel:</strong> Differential drive arrangement</li>
<li><strong>3-Wheel Triangle:</strong> Three modules in an equilateral triangle</li>
<li><strong>4-Wheel Square:</strong> Classic square configuration</li>
<li><strong>4-Wheel Rectangle:</strong> Rectangular configuration for longer robots</li>
<li><strong>6-Wheel Hexagon:</strong> Hexagonal arrangement</li>
<li><strong>8-Wheel Octagon:</strong> Octagonal arrangement</li>
<li><strong>8-Wheel Square:</strong> Double-layered square with inner and outer modules</li>
<li><strong>12-Wheel Hexagon:</strong> Double-layered hexagonal arrangement</li>
<li><strong>16-Wheel Octagon:</strong> Double-layered octagonal arrangement</li>
</ul>
<h3>Custom Configurations</h3>
<p>Create your own robot configuration:</p>
<ol>
<li>Enter the desired number of modules (Minimum of 2)</li>
<li>Click <strong>Generate Position Inputs</strong> to create input fields</li>
<li>For each module, specify:
<ul>
<li><strong>Module Name:</strong> A label for the module</li>
<li><strong>X Position:</strong> Distance from robot center (pixels, positive = right)
</li>
<li><strong>Y Position:</strong> Distance from robot center (pixels, positive = up)</li>
</ul>
</li>
<li>Click <strong>Apply Custom Configuration</strong> to see your design</li>
<li>Use <strong>Remove Position Inputs</strong> to clear the custom fields. This does not reset
the robot, only clears the input box</li>
</ol>
<h3>Understanding the Visualization</h3>
<ul>
<li><strong>Robot Frame:</strong> The filled polygon connecting the outer-most module positions
</li>
<li><strong>Modules:</strong> Circular markers at each wheel position</li>
<li><strong>Velocity Arrows:</strong> Red arrows showing the direction and magnitude of each
module's velocity</li>
<li><strong>Grid:</strong> Moves relative to the robot to show field-relative motion</li>
<li><strong>Gyro Heading:</strong> The current rotation angle of the robot in degrees</li>
</ul>
<h3>Module States Panel</h3>
<p>Displays real-time information for each module:</p>
<ul>
<li><strong>Angle:</strong> The direction the module is pointing (in degrees)</li>
<li><strong>Speed:</strong> The velocity of the module (in pixels/second)</li>
</ul>
</div>
</details>
<details>
<summary>Explanation of Swerve Kinematics</summary>
<div class="documentation-content">
<h3>What is Swerve Drive?</h3>
<p>Swerve drive (also called holonomic drive) is a drivetrain design where each wheel module can
independently rotate and drive in any direction. This allows the robot to move in any direction
while simultaneously rotating, providing exceptional maneuverability.</p>
<h3>Kinematic Equations</h3>
<p>The simulator calculates each module's state using inverse kinematics. Given a desired robot
velocity (v<sub>x</sub>, v<sub>y</sub>) and rotation rate (ω), we calculate each module's
required velocity.</p>
<h4>Field-Relative vs Robot-Relative</h4>
<p>This simulator uses <strong>field-relative control</strong>, meaning the velocity commands are
relative to the field, not the robot's current orientation. The inputs are transformed to
robot-relative coordinates using the current gyro heading:</p>
<pre>
v<sub>robot_x</sub> = v<sub>field_x</sub> × cos(-θ) - v<sub>field_y</sub> × sin(-θ)
v<sub>robot_y</sub> = v<sub>field_x</sub> × sin(-θ) + v<sub>field_y</sub> × cos(-θ)
</pre>
<p>Where θ is the robot's heading angle (gyro reading).</p>
<h4>Module Velocity Calculation</h4>
<p>For each module at position (x<sub>i</sub>, y<sub>i</sub>) relative to the robot's center of
rotation:</p>
<ol>
<li><strong>Translation component:</strong> The robot's linear velocity (v<sub>robot_x</sub>,
v<sub>robot_y</sub>)</li>
<li><strong>Rotation component:</strong> Perpendicular to the position vector, with magnitude
proportional to distance from center:
<pre>
v<sub>rot_x</sub> = -y<sub>i</sub> × ω
v<sub>rot_y</sub> = x<sub>i</sub> × ω
</pre>
</li>
<li><strong>Combined velocity:</strong> Vector sum of translation and rotation:
<pre>
v<sub>module_x</sub> = v<sub>robot_x</sub> + v<sub>rot_x</sub>
v<sub>module_y</sub> = v<sub>robot_y</sub> + v<sub>rot_y</sub>
</pre>
</li>
</ol>
<h4>Module Angle and Speed</h4>
<p>From the module's velocity vector, we calculate:</p>
<ul>
<li><strong>Speed:</strong> The magnitude of the velocity vector: √(v<sub>x</sub>² +
v<sub>y</sub>²)</li>
<li><strong>Angle:</strong> The direction of the velocity vector: arctan2(v<sub>y</sub>,
v<sub>x</sub>)</li>
</ul>
<h4>Speed Normalization</h4>
<p>If any module's calculated speed exceeds the maximum allowed speed, all module velocities are
scaled proportionally. This preserves the movement direction while respecting hardware limits:
</p>
<pre>
scale = max_speed / max(calculated_speeds)
if scale &lt; 1:
all_module_speeds × scale
</pre>
<h3>Gyro Integration</h3>
<p>The robot's heading (gyro angle) is continuously updated by integrating the rotation rate:</p>
<pre>
θ<sub>new</sub> = θ<sub>old</sub> + ω × Δt
</pre>
<p>Where Δt is the time step. The heading is normalized to stay within the range [-π, π].</p>
<h3>Real-World Applications</h3>
<p>Swerve drive systems are commonly used in:</p>
<ul>
<li><strong>FRC (FIRST Robotics Competition):</strong> For competitive robots requiring precise
positioning</li>
<li><strong>Industrial AGVs:</strong> Automated guided vehicles in warehouses</li>
<li><strong>Research Platforms:</strong> Mobile robots requiring omnidirectional movement</li>
</ul>
<h3>Key Advantages</h3>
<ul>
<li>True holonomic motion (can move in any direction without rotating)</li>
<li>Can translate and rotate simultaneously</li>
<li>Excellent maneuverability in constrained spaces</li>
<li>No "drift" or unwanted rotation during translation</li>
</ul>
<h3>Implementation Considerations</h3>
<ul>
<li><strong>Mechanical Complexity:</strong> Each module requires two motors (drive and steering)
</li>
<li><strong>Control Complexity:</strong> Requires coordinated control of all modules</li>
<li><strong>Sensor Requirements:</strong> Absolute encoders recommended for module angles</li>
<li><strong>Cost:</strong> More expensive than traditional drivetrains</li>
</ul>
</div>
</details>
</section>
<section class="visualization-canvas"> <section class="visualization-canvas">
<h2>Robot Visualization</h2> <h2>Robot Visualization</h2>
<canvas id="swerve-canvas" width="800" height="800"></canvas> <canvas id="swerve-canvas" width="800" height="800"></canvas>
@ -26,24 +207,57 @@
<legend>Translation &amp; Rotation</legend> <legend>Translation &amp; Rotation</legend>
<div class="control-group"> <div class="control-group">
<label for="vx-slider">Strafe Left/Right (pixels/s)</label> <button id="control-mode-toggle" type="button">Switch to Keyboard/Joystick Controls</button>
<input type="range" id="vx-slider" min="-300" max="300" step="10" value="0">
<output id="vx-value">0</output>
</div> </div>
<div class="control-group"> <div id="slider-controls">
<label for="vy-slider">Move Forward/Backward (pixels/s)</label> <div class="control-group">
<input type="range" id="vy-slider" min="-300" max="300" step="10" value="0"> <label for="vy-slider">Move Forward/Backward (pixels/s)</label>
<output id="vy-value">0</output> <input type="range" id="vy-slider" min="-300" max="300" step="10" value="0">
<output id="vy-value">0</output>
</div>
<div class="control-group">
<label for="vx-slider">Strafe Left/Right (pixels/s)</label>
<input type="range" id="vx-slider" min="-300" max="300" step="10" value="0">
<output id="vx-value">0</output>
</div>
<div class="control-group">
<label for="omega-slider">Rotation (rad/s)</label>
<input type="range" id="omega-slider" min="-3" max="3" step="0.1" value="0">
<output id="omega-value">0</output>
</div>
<button id="reset-btn" type="button">Reset Controls</button>
</div> </div>
<div class="control-group"> <div id="keyboard-controls" style="display: none;">
<label for="omega-slider">Rotation (rad/s)</label> <div class="control-group">
<input type="range" id="omega-slider" min="-3" max="3" step="0.1" value="0"> <label for="keyboard-max-speed">Max Speed (pixels/s)</label>
<output id="omega-value">0</output> <input type="range" id="keyboard-max-speed" min="50" max="300" step="10" value="150">
</div> <output id="keyboard-max-speed-value">150</output>
</div>
<button id="reset-btn" type="button">Reset Controls</button> <div class="control-group">
<label for="keyboard-max-rotation">Max Rotation (rad/s)</label>
<input type="range" id="keyboard-max-rotation" min="0.5" max="3" step="0.1" value="1.5">
<output id="keyboard-max-rotation-value">1.5</output>
</div>
<div class="keyboard-instructions">
<h4>Keyboard Controls:</h4>
<ul>
<li><strong>W:</strong> Move Forward</li>
<li><strong>A:</strong> Strafe Left</li>
<li><strong>S:</strong> Move Backward</li>
<li><strong>D:</strong> Strafe Right</li>
<li><strong>Q:</strong> Rotate Counter-Clockwise</li>
<li><strong>E:</strong> Rotate Clockwise</li>
</ul>
<p><em>Click on the canvas area to focus for keyboard input</em></p>
</div>
</div>
</fieldset> </fieldset>
<fieldset> <fieldset>
@ -51,7 +265,7 @@
<div class="control-group"> <div class="control-group">
<label for="max-speed-slider">Max Module Speed (pixels/s)</label> <label for="max-speed-slider">Max Module Speed (pixels/s)</label>
<input type="range" id="max-speed-slider" min="1" max="300" step="10" value="150"> <input type="range" id="max-speed-slider" min="200" max="1000" step="10" value="400">
<output id="max-speed-value">0</output> <output id="max-speed-value">0</output>
</div> </div>
</fieldset> </fieldset>
@ -77,7 +291,7 @@
<div class="control-group"> <div class="control-group">
<label for="module-count">Number of Modules</label> <label for="module-count">Number of Modules</label>
<input type="number" id="module-count" min="2" max="12" value="4" step="1"> <input type="number" id="module-count" min="2" max="64" value="4" step="1">
</div> </div>
<button id="generate-inputs-btn" type="button">Generate Position Inputs</button> <button id="generate-inputs-btn" type="button">Generate Position Inputs</button>
@ -102,19 +316,50 @@
<!-- Dynamically generated module data will appear here --> <!-- Dynamically generated module data will appear here -->
</div> </div>
</section> </section>
<section class="documentation">
<h2>About This Project</h2>
<details>
<summary>How To Use</summary>
</details>
<details>
<summary>Explaination of Swerve Kinematics</summary>
</details>
</section>
</main> </main>
<script type="module" src="vendor/lucio/graham-scan.mjs"></script> <script type="module" src="vendor/lucio/graham-scan.mjs"></script>
<script type="module" src="script.js"></script> <script type="module" src="script.js"></script>
<!-- Register Service Worker for PWA -->
<script>
if ('serviceWorker' in navigator) {
window.addEventListener('load', () => {
navigator.serviceWorker.register('/sw.js')
.then((registration) => {
console.log('Service Worker registered successfully:', registration.scope);
// Check for updates periodically
setInterval(() => {
registration.update();
}, 60000); // Check every minute
// Handle updates
registration.addEventListener('updatefound', () => {
const newWorker = registration.installing;
newWorker.addEventListener('statechange', () => {
if (newWorker.state === 'installed' && navigator.serviceWorker.controller) {
// New service worker available, prompt user to reload
if (confirm('A new version is available! Reload to update?')) {
newWorker.postMessage({ type: 'SKIP_WAITING' });
window.location.reload();
}
}
});
});
})
.catch((error) => {
console.log('Service Worker registration failed:', error);
});
// Handle controller change (new service worker activated)
navigator.serviceWorker.addEventListener('controllerchange', () => {
window.location.reload();
});
});
}
</script>
</body> </body>
</html> </html>

22
manifest.json Normal file
View File

@ -0,0 +1,22 @@
{
"name": "MuneBase Swerve Drive Sim",
"short_name": "Swerve Sim",
"start_url": "/",
"display": "standalone",
"theme_color": "#16213e",
"background_color": "#16213e",
"icons": [
{
"src": "/icons/192.svg",
"sizes": "192x192",
"type": "image/svg+xml",
"purpose": "any"
},
{
"src": "/icons/512.svg",
"sizes": "512x512",
"type": "image/svg+xml",
"purpose": "any"
}
]
}

503
script.js
View File

@ -4,6 +4,82 @@
import GrahamScan from "./vendor/lucio/graham-scan.mjs"; import GrahamScan from "./vendor/lucio/graham-scan.mjs";
class Joystick {
constructor(ctx, x, y, radius) {
this.ctx = ctx;
this.x = x;
this.y = y;
this.radius = radius;
this.nubX = x;
this.nubY = y;
this.active = false;
this.visible = false;
}
draw() {
if (!this.visible)
return;
this.ctx.save();
this.ctx.beginPath();
this.ctx.arc(this.x, this.y, this.radius, 0, Math.PI * 2);
this.ctx.fillStyle = rootStyles.getPropertyValue('--primary-dark-blue');
this.ctx.fill();
this.ctx.beginPath();
this.ctx.arc(this.nubX, this.nubY, this.radius / 3, 0, Math.PI * 2);
this.ctx.fillStyle = rootStyles.getPropertyValue('--accent-blue');
this.ctx.fill();
this.ctx.restore();
}
checkShouldActivate(x, y) {
if (!this.touchInRange(x, y))
return;
this.active = true;
this.processTouch(x, y);
}
deactivate() {
this.active = false;
this.reset();
}
touchInRange(x, y) {
const deltaX = x - this.x;
const deltaY = y - this.y;
const dist = Math.sqrt(deltaX * deltaX + deltaY * deltaY);
return dist <= this.radius;
}
processTouch(x, y) {
if (this.touchInRange(x, y) && this.active) {
this.nubX = x;
this.nubY = y;
}
}
reset() {
this.nubX = this.x;
this.nubY = this.y;
}
getX() {
return (this.nubX - this.x) / this.radius;
}
getY() {
return (this.y - this.nubY) / this.radius;
}
setIsVisible(visible) {
this.visible = visible;
}
}
// 2D vector class to make some of the math easier // 2D vector class to make some of the math easier
class Vec2D { class Vec2D {
constructor(x, y) { constructor(x, y) {
@ -86,18 +162,19 @@ class SwerveDrive {
} }
drive(velocityX, velocityY, turnSpeed, maxModuleSpeed, deltaTime = 0.01) { drive(velocityX, velocityY, turnSpeed, maxModuleSpeed, deltaTime = 0.01) {
// Update gyro heading first // Store the requested turn speed for later calculation of actual turn speed
this.updateHeading(turnSpeed, deltaTime); this.requestedTurnSpeed = turnSpeed;
// Take in a requested speeds and update every module // Take in a requested speeds and update every module (but don't update heading yet)
this.modules.forEach(module => this.modules.forEach(module =>
module.calculateState(velocityX, velocityY, turnSpeed, this.gyroHeading) module.calculateState(velocityX, velocityY, turnSpeed, this.gyroHeading)
); );
// If any speeds exceed the max speed, normalize down so we don't effect movement direction // If any speeds exceed the max speed, normalize down so we don't effect movement direction
const maxCalculated = Math.max(...this.modules.map(m => m.speed), 0); const maxCalculated = Math.max(...this.modules.map(m => m.speed), 0);
let scale = 1.0;
if (maxCalculated > maxModuleSpeed) { if (maxCalculated > maxModuleSpeed) {
const scale = maxModuleSpeed / maxCalculated; scale = maxModuleSpeed / maxCalculated;
this.modules.forEach(module => { this.modules.forEach(module => {
module.velocity.x *= scale; module.velocity.x *= scale;
module.velocity.y *= scale; module.velocity.y *= scale;
@ -105,6 +182,38 @@ class SwerveDrive {
module.angle = module.velocity.angle(); module.angle = module.velocity.angle();
}); });
} }
// Update heading with the actual turn speed (scaled if modules were limited)
const actualTurnSpeed = turnSpeed * scale;
this.updateHeading(actualTurnSpeed, deltaTime);
this.actualTurnSpeed = actualTurnSpeed;
}
getActualVelocity() {
// Calculate the actual robot velocity from the average of module velocities
// This returns the velocity in robot-relative coordinates
if (this.modules.length === 0) return new Vec2D(0, 0);
let sumX = 0;
let sumY = 0;
// Average the module velocities (they're in robot frame)
this.modules.forEach(module => {
sumX += module.velocity.x;
sumY += module.velocity.y;
});
const avgX = sumX / this.modules.length;
const avgY = sumY / this.modules.length;
// Transform back to field-relative coordinates
const cosHeading = Math.cos(this.gyroHeading);
const sinHeading = Math.sin(this.gyroHeading);
const fieldVelX = avgX * cosHeading - avgY * sinHeading;
const fieldVelY = avgX * sinHeading + avgY * cosHeading;
return new Vec2D(fieldVelX, fieldVelY);
} }
} }
@ -236,6 +345,15 @@ const PresetConfigs = {
* BEGIN DOM VARIABLES * BEGIN DOM VARIABLES
*/ */
// Get canvas
const canvas = document.getElementById('swerve-canvas');
// Get the canvas context as constant
const ctx = canvas.getContext('2d');
// Get CSS variables for use in canvas
const rootStyles = getComputedStyle(document.documentElement);
// Get all control elements // Get all control elements
const vxSlider = document.getElementById('vx-slider'); const vxSlider = document.getElementById('vx-slider');
const vySlider = document.getElementById('vy-slider'); const vySlider = document.getElementById('vy-slider');
@ -255,6 +373,15 @@ const generateInputsBtn = document.getElementById('generate-inputs-btn');
const clearInputsBtn = document.getElementById('delete-inputs-btn'); const clearInputsBtn = document.getElementById('delete-inputs-btn');
const applyCustomBtn = document.getElementById('apply-custom-btn'); const applyCustomBtn = document.getElementById('apply-custom-btn');
// Get control mode elements
const controlModeToggle = document.getElementById('control-mode-toggle');
const sliderControls = document.getElementById('slider-controls');
const keyboardControls = document.getElementById('keyboard-controls');
const keyboardMaxSpeed = document.getElementById('keyboard-max-speed');
const keyboardMaxSpeedOutput = document.getElementById('keyboard-max-speed-value');
const keyboardMaxRotation = document.getElementById('keyboard-max-rotation');
const keyboardMaxRotationOutput = document.getElementById('keyboard-max-rotation-value');
// Preset buttons // Preset buttons
const preset2WheelBtn = document.getElementById('preset-2wheel'); const preset2WheelBtn = document.getElementById('preset-2wheel');
const preset3WheelBtn = document.getElementById('preset-3wheel'); const preset3WheelBtn = document.getElementById('preset-3wheel');
@ -268,29 +395,36 @@ const preset16OctBtn = document.getElementById('preset-16oct');
/* /*
* END DOM VARIABLES * END DOM VARIABLES
* BEGIN CONTROL MODE AND INPUT DEVICE VARIABLES
*/
// Control mode state
let isManualInputMode = false; // true = keyboard/gamepad mode, false = slider mode
// Keyboard state tracking
const keyState = {
w: false, // Forward
a: false, // Left
s: false, // Backward
d: false, // Right
q: false, // Counter-clockwise
e: false // Clockwise
};
// Current manual input velocities (from keyboard or gamepad)
let manualInputVelX = 0;
let manualInputVelY = 0;
let manualInputOmega = 0;
/*
* END CONTROL MODE AND INPUT DEVICE VARIABLES
* BEGIN LISTENER CODE * BEGIN LISTENER CODE
*/ */
vxSlider.addEventListener('input', (e) => {
vxOutput.textContent = parseFloat(e.target.value);
});
vxOutput.textContent = parseFloat(vxSlider.value);
vySlider.addEventListener('input', (e) => {
vyOutput.textContent = parseFloat(e.target.value);
});
vyOutput.textContent = parseFloat(vySlider.value);
omegaSlider.addEventListener('input', (e) => {
omegaOutput.textContent = parseFloat(e.target.value);
});
omegaOutput.textContent = parseFloat(omegaSlider.value);
maxSpeedSlider.addEventListener('input', (e) => { maxSpeedSlider.addEventListener('input', (e) => {
maxSpeedOutput.textContent = parseFloat(e.target.value); maxSpeedOutput.textContent = e.target.value;
}); });
maxSpeedOutput.textContent = parseFloat(maxSpeedSlider.value); maxSpeedOutput.textContent = maxSpeedSlider.value;
resetBtn.addEventListener('click', (e) => { resetBtn.addEventListener('click', (e) => {
vxSlider.value = 0; vxSlider.value = 0;
@ -302,6 +436,97 @@ resetBtn.addEventListener('click', (e) => {
omegaOutput.textContent = parseFloat(omegaSlider.value); omegaOutput.textContent = parseFloat(omegaSlider.value);
}); });
// Keyboard control sliders
keyboardMaxSpeed.addEventListener('input', (e) => {
keyboardMaxSpeedOutput.textContent = parseFloat(e.target.value);
});
keyboardMaxSpeedOutput.textContent = parseFloat(keyboardMaxSpeed.value);
keyboardMaxRotation.addEventListener('input', (e) => {
keyboardMaxRotationOutput.textContent = parseFloat(e.target.value);
});
keyboardMaxRotationOutput.textContent = parseFloat(keyboardMaxRotation.value);
// Control mode toggle
controlModeToggle.addEventListener('click', () => {
isManualInputMode = !isManualInputMode;
if (isManualInputMode) {
// Switch to manual input mode (keyboard/gamepad)
sliderControls.style.display = 'none';
keyboardControls.style.display = 'block';
controlModeToggle.textContent = 'Switch to Slider Controls';
// Reset slider values when switching to manual input
vxSlider.value = 0;
vySlider.value = 0;
omegaSlider.value = 0;
vxOutput.textContent = '0';
vyOutput.textContent = '0';
omegaOutput.textContent = '0';
leftJoystick.setIsVisible(true);
rightJoystick.setIsVisible(true);
} else {
// Switch to slider mode
sliderControls.style.display = 'block';
keyboardControls.style.display = 'none';
controlModeToggle.textContent = 'Switch to Keyboard/Joystick Controls';
// Reset manual input state
Object.keys(keyState).forEach(key => keyState[key] = false);
manualInputVelX = 0;
manualInputVelY = 0;
manualInputOmega = 0;
leftJoystick.setIsVisible(false);
rightJoystick.setIsVisible(false);
}
});
// Keyboard event listeners
document.addEventListener('keydown', (e) => {
if (!isManualInputMode) return;
const key = e.key.toLowerCase();
if (key in keyState) {
keyState[key] = true;
e.preventDefault();
updateManualInputVelocities();
}
});
document.addEventListener('keyup', (e) => {
if (!isManualInputMode) return;
const key = e.key.toLowerCase();
if (key in keyState) {
keyState[key] = false;
e.preventDefault();
updateManualInputVelocities();
}
});
// Function to update velocities based on manual input devices (keyboard/gamepad)
function updateManualInputVelocities() {
const maxSpeed = parseFloat(keyboardMaxSpeed.value);
const maxRotation = parseFloat(keyboardMaxRotation.value);
// Calculate translation velocities from keyboard input
manualInputVelX = 0;
manualInputVelY = 0;
if (keyState.d) manualInputVelX += maxSpeed; // Right
if (keyState.a) manualInputVelX -= maxSpeed; // Left
if (keyState.w) manualInputVelY += maxSpeed; // Forward
if (keyState.s) manualInputVelY -= maxSpeed; // Backward
// Calculate rotation velocity from keyboard input
manualInputOmega = 0;
if (keyState.e) manualInputOmega += maxRotation; // Clockwise
if (keyState.q) manualInputOmega -= maxRotation; // Counter-clockwise
// TODO: Add gamepad input processing here
}
// Preset button event listeners // Preset button event listeners
preset2WheelBtn.addEventListener('click', () => { preset2WheelBtn.addEventListener('click', () => {
const positions = PresetConfigs.twoWheel(robotSize); const positions = PresetConfigs.twoWheel(robotSize);
@ -380,8 +605,8 @@ preset16OctBtn.addEventListener('click', () => {
generateInputsBtn.addEventListener('click', () => { generateInputsBtn.addEventListener('click', () => {
const count = parseInt(moduleCountInput.value); const count = parseInt(moduleCountInput.value);
if (isNaN(count) || count < 2) { if (isNaN(count) || count < 2 || count > 64) {
alert('Please enter a valid number of modules above or equal to 2.'); alert('Please enter a valid number of modules between 2 and 64.');
return; return;
} }
generateModuleInputs(count); generateModuleInputs(count);
@ -416,16 +641,171 @@ applyCustomBtn.addEventListener('click', () => {
updateModuleDisplays(robot); updateModuleDisplays(robot);
}); });
function convertTouchToCanvas(inCoords) {
const rect = canvas.getBoundingClientRect();
// Calculate the scale factor between display size and canvas internal size
const scaleX = canvas.width / rect.width;
const scaleY = canvas.height / rect.height;
// Convert client coordinates to canvas coordinates, accounting for scaling
const x = (inCoords.x - rect.left) * scaleX - canvas.width / 2;
const y = (inCoords.y - rect.top) * scaleY - canvas.height / 2;
return { x, y };
}
canvas.addEventListener('mousedown', (event) => {
const canvasCoords = convertTouchToCanvas({ x: event.clientX, y: event.clientY });
leftJoystick.checkShouldActivate(canvasCoords.x, canvasCoords.y);
rightJoystick.checkShouldActivate(canvasCoords.x, canvasCoords.y);
});
canvas.addEventListener('mousemove', (event) => {
const canvasCoords = convertTouchToCanvas({ x: event.clientX, y: event.clientY });
leftJoystick.processTouch(canvasCoords.x, canvasCoords.y);
rightJoystick.processTouch(canvasCoords.x, canvasCoords.y);
});
canvas.addEventListener('mouseup', (event) => {
leftJoystick.deactivate();
rightJoystick.deactivate();
});
// Touch event listeners for mobile/tablet support
canvas.addEventListener('touchstart', (event) => {
event.preventDefault(); // Prevent scrolling and default touch behavior
for (let i = 0; i < event.touches.length; i++) {
const touch = event.touches[i];
const canvasCoords = convertTouchToCanvas({ x: touch.clientX, y: touch.clientY });
// alert(`X: ${canvasCoords.x}, Y: ${canvasCoords.y}`);
leftJoystick.checkShouldActivate(canvasCoords.x, canvasCoords.y);
rightJoystick.checkShouldActivate(canvasCoords.x, canvasCoords.y);
}
});
canvas.addEventListener('touchmove', (event) => {
event.preventDefault(); // Prevent scrolling while using joysticks
for (let i = 0; i < event.touches.length; i++) {
const touch = event.touches[i];
const canvasCoords = convertTouchToCanvas({ x: touch.clientX, y: touch.clientY });
leftJoystick.processTouch(canvasCoords.x, canvasCoords.y);
rightJoystick.processTouch(canvasCoords.x, canvasCoords.y);
}
});
canvas.addEventListener('touchend', (event) => {
event.preventDefault();
// If no touches remain, deactivate both joysticks
if (event.touches.length === 0) {
leftJoystick.deactivate();
rightJoystick.deactivate();
} else {
// Check if the remaining touches are still in range of the joysticks
let leftStillActive = false;
let rightStillActive = false;
for (let i = 0; i < event.touches.length; i++) {
const touch = event.touches[i];
const canvasCoords = convertTouchToCanvas({ x: touch.clientX, y: touch.clientY });
if (leftJoystick.touchInRange(canvasCoords.x, canvasCoords.y)) {
leftStillActive = true;
}
if (rightJoystick.touchInRange(canvasCoords.x, canvasCoords.y)) {
rightStillActive = true;
}
}
if (!leftStillActive) {
leftJoystick.deactivate();
leftJoystick.reset();
}
if (!rightStillActive) {
rightJoystick.deactivate();
rightJoystick.reset();
}
}
});
canvas.addEventListener('touchcancel', (event) => {
// Handle touch cancellation (e.g., when system interrupts)
leftJoystick.deactivate();
leftJoystick.reset();
rightJoystick.deactivate();
rightJoystick.reset();
});
/* /*
* END LISTENER CODE * END LISTENER CODE
* BEGIN DYNAMIC DOM FUNCTIONS * BEGIN DYNAMIC DOM FUNCTIONS
*/ */
// Function to calculate evenly spaced module positions in circular layers
function calculateModulePositions(count) {
if (count <= 0) return [];
const baseRadius = 50; // Base radius for the first layer
const positions = [];
let remainingModules = count;
let numberOfLayers = Math.ceil(count / 6);
let modulesPerLayer = Math.ceil(count / numberOfLayers);
let angleOffset = 0;
let currentLayer = 0;
let moduleIndex = 0;
while (remainingModules > 0) {
// Determine modules for this layer
let modulesInThisLayer;
if (remainingModules <= modulesPerLayer) {
// Last layer gets all remaining modules
modulesInThisLayer = remainingModules;
} else {
// All other layers: try to distribute evenly with max modulesPerLayer
const remainingLayers = Math.ceil(remainingModules / modulesPerLayer);
modulesInThisLayer = Math.min(modulesPerLayer, Math.ceil(remainingModules / remainingLayers));
}
// Calculate radius for this layer
const radius = currentLayer === 0 ? baseRadius : baseRadius * (1 + currentLayer * 0.75);
// Calculate positions for modules in this layer
for (let i = 0; i < modulesInThisLayer; i++) {
const angle = (angleOffset + 2 * Math.PI * i) / modulesInThisLayer;
const x = Math.round(radius * Math.cos(angle));
const y = Math.round(radius * Math.sin(angle));
positions.push({
x: x,
y: y,
name: `Layer ${currentLayer + 1} Module ${(moduleIndex % modulesPerLayer) + 1}`
});
moduleIndex++;
}
angleOffset += Math.PI;
remainingModules -= modulesInThisLayer;
currentLayer++;
}
return positions;
}
function generateModuleInputs(count) { function generateModuleInputs(count) {
const container = document.getElementById('module-position-inputs'); const container = document.getElementById('module-position-inputs');
container.innerHTML = ''; // Clear existing inputs container.innerHTML = ''; // Clear existing inputs
// Calculate evenly spaced positions
const positions = calculateModulePositions(count);
for (let i = 0; i < count; i++) { for (let i = 0; i < count; i++) {
const position = positions[i];
const moduleFieldset = document.createElement('fieldset'); const moduleFieldset = document.createElement('fieldset');
moduleFieldset.className = 'module-input-group'; moduleFieldset.className = 'module-input-group';
moduleFieldset.innerHTML = ` moduleFieldset.innerHTML = `
@ -433,15 +813,15 @@ function generateModuleInputs(count) {
<div class="control-group"> <div class="control-group">
<label for="module-${i}-name">Module Name</label> <label for="module-${i}-name">Module Name</label>
<input type="text" id="module-${i}-name" value="Module ${i + 1}" required> <input type="text" id="module-${i}-name" value="${position.name}" required>
</div> </div>
<div class="control-group"> <div class="control-group">
<label for="module-${i}-x">X Position (pixels)</label> <label for="module-${i}-x">X Position (pixels)</label>
<input type="number" id="module-${i}-x" step="1" value="0" required> <input type="number" id="module-${i}-x" step="1" value="${position.x}" required>
</div> </div>
<div class="control-group"> <div class="control-group">
<label for="module-${i}-y">Y Position (pixels)</label> <label for="module-${i}-y">Y Position (pixels)</label>
<input type="number" id="module-${i}-y" step="0.1" value="0" required> <input type="number" id="module-${i}-y" step="0.1" value="${position.y}" required>
</div> </div>
`; `;
container.appendChild(moduleFieldset); container.appendChild(moduleFieldset);
@ -504,12 +884,8 @@ function updateModuleDisplays(robot) {
* BEGIN ANIMATION CODE * BEGIN ANIMATION CODE
*/ */
// Get the canvas and context as constants const leftJoystick = new Joystick(ctx, -250, 250, 100);
const canvas = document.getElementById('swerve-canvas'); const rightJoystick = new Joystick(ctx, 250, 250, 100);
const ctx = canvas.getContext('2d');
// Get CSS variables for use in canvas
const rootStyles = getComputedStyle(document.documentElement);
function drawGrid(ctx, sideLength, gridSquareSize, xOffset, yOffset) { function drawGrid(ctx, sideLength, gridSquareSize, xOffset, yOffset) {
ctx.save(); ctx.save();
@ -614,8 +990,12 @@ function drawRobot(ctx, robot, heading) {
ctx.restore(); // Restore to remove rotation ctx.restore(); // Restore to remove rotation
} }
// Initialize Variables // Initialize Variables
// Joysticks
const supportsTouch = (navigator.maxTouchPoints > 0);
// General robot
const robotSize = 200; const robotSize = 200;
const defaultModulePositions = PresetConfigs.fourWheelSquare(robotSize); const defaultModulePositions = PresetConfigs.fourWheelSquare(robotSize);
const robot = new SwerveDrive(defaultModulePositions, "4-Wheel Square"); const robot = new SwerveDrive(defaultModulePositions, "4-Wheel Square");
@ -635,28 +1015,65 @@ function animate() {
ctx.save(); ctx.save();
ctx.translate(canvas.width / 2, canvas.height / 2); ctx.translate(canvas.width / 2, canvas.height / 2);
// Update speeds based on sliders // Update speeds based on control mode
xSpeed = parseFloat(vxSlider.value); if (isManualInputMode) {
ySpeed = -parseFloat(vySlider.value); const maxSpeed = parseFloat(keyboardMaxSpeed.value);
turnSpeed = parseFloat(omegaSlider.value); const maxRotation = parseFloat(keyboardMaxRotation.value);
// Animate the grid with robot movement // Combine keyboard and joystick inputs
let offsetSpeedDivisor = (100 - gridSquareSize <= 0 ? 1 : 100 - gridSquareSize); const keyboardX = manualInputVelX;
const keyboardY = -manualInputVelY; // Negative because canvas Y axis is inverted
const keyboardOmega = manualInputOmega;
// Update grid offsets based on robot movement const joystickX = leftJoystick.getX() * maxSpeed;
xGridOffset = (xGridOffset + (xSpeed / offsetSpeedDivisor)) % gridSquareSize; const joystickY = -leftJoystick.getY() * maxSpeed;
yGridOffset = (yGridOffset + (ySpeed / offsetSpeedDivisor)) % gridSquareSize; const joystickOmega = rightJoystick.getX() * maxRotation;
// Use joystick if active, otherwise use keyboard
xSpeed = leftJoystick.active ? joystickX : keyboardX;
ySpeed = leftJoystick.active ? joystickY : keyboardY;
turnSpeed = rightJoystick.active ? joystickOmega : keyboardOmega;
} else {
xSpeed = parseFloat(vxSlider.value);
ySpeed = -parseFloat(vySlider.value);
turnSpeed = parseFloat(omegaSlider.value);
}
// Update module states before drawing the robot // Update module states before drawing the robot
// The drive() method will update the gyroHeading internally // The drive() method will update the gyroHeading internally
robot.drive(xSpeed, ySpeed, turnSpeed, parseFloat(maxSpeedSlider.value)); robot.drive(xSpeed, ySpeed, turnSpeed, parseFloat(maxSpeedSlider.value));
updateModuleDisplays(robot); updateModuleDisplays(robot);
// Get the actual robot velocity (after scaling to max module speed) for grid animation
const actualVelocity = robot.getActualVelocity();
// Update control outputs with actual speeds
if (isManualInputMode) {
// In manual input mode (keyboard/gamepad), show the current values
keyboardMaxSpeedOutput.textContent = `Max: ${keyboardMaxSpeed.value} | Current: ${Math.max(Math.abs(actualVelocity.x), Math.abs(actualVelocity.y)).toFixed(1)}`;
keyboardMaxRotationOutput.textContent = `Max: ${keyboardMaxRotation.value} | Current: ${Math.abs(robot.actualTurnSpeed || 0).toFixed(2)}`;
} else {
// In slider mode, show requested vs actual
vxOutput.textContent = `Requested: ${vxSlider.value} | Actual: ${actualVelocity.x.toFixed(2)}`;
vyOutput.textContent = `Requested: ${vySlider.value} | Actual: ${-actualVelocity.y.toFixed(2)}`;
omegaOutput.textContent = `Requested: ${omegaSlider.value} | Actual: ${(robot.actualTurnSpeed || 0).toFixed(2)}`;
}
// Animate the grid
let offsetSpeedDivisor = (100 - gridSquareSize <= 0 ? 1 : 100 - gridSquareSize);
// Update grid offsets based on robot movement
xGridOffset = (xGridOffset + (actualVelocity.x / offsetSpeedDivisor)) % gridSquareSize;
yGridOffset = (yGridOffset + (actualVelocity.y / offsetSpeedDivisor)) % gridSquareSize;
// Draw the robot and it's movement. Grid should be oversized so movement // Draw the robot and it's movement. Grid should be oversized so movement
// doesn't find the edge of the grid // doesn't find the edge of the grid
drawGrid(ctx, canvas.width * 2, gridSquareSize, xGridOffset, yGridOffset); drawGrid(ctx, canvas.width * 2, gridSquareSize, xGridOffset, yGridOffset);
drawRobot(ctx, robot, robot.gyroHeading); drawRobot(ctx, robot, robot.gyroHeading);
leftJoystick.draw();
rightJoystick.draw();
// Do it all over again // Do it all over again
ctx.restore(); ctx.restore();
requestAnimationFrame(animate); requestAnimationFrame(animate);

View File

@ -238,7 +238,7 @@ tr:hover {
.visualization-area { .visualization-area {
grid-column: 1 / 2; grid-column: 1 / 2;
grid-row: 1 / 3; grid-row: 2 / 4;
} }
#swerve-canvas { #swerve-canvas {
@ -252,22 +252,22 @@ tr:hover {
.controls-panel { .controls-panel {
grid-column: 1 / 2; grid-column: 1 / 2;
grid-row: 2 / 3; grid-row: 3 / 4;
} }
.config-panel { .config-panel {
grid-column: 2 / 3; grid-column: 2 / 3;
grid-row: 1 / 2; grid-row: 2 / 3;
} }
.module-states { .module-states {
grid-column: 2 / 3; grid-column: 2 / 3;
grid-row: 2 / 3; grid-row: 3 / 4;
} }
.documentation { .documentation {
grid-column: 1 / 3; grid-column: 1 / 3;
grid-row: 4 / 5; grid-row: 1 / 2;
} }
fieldset { fieldset {
@ -362,3 +362,9 @@ button:hover {
color: var(--text-light); color: var(--text-light);
font-weight: bold; font-weight: bold;
} }
@media only screen and (max-width: 768px) {
main {
display: block;
}
}

33
sw.js Normal file
View File

@ -0,0 +1,33 @@
const CACHE_NAME = 'v1';
const ASSETS = [
'/',
'/index.html',
'/script.js',
'/styles.css',
'/manifest.json',
'/icons/192.svg',
'/icons/512.svg',
'/vendor/lucio/graham-scan.mjs'
];
self.addEventListener('install', (e) => {
e.waitUntil(
caches.open(CACHE_NAME).then(cache => cache.addAll(ASSETS))
);
self.skipWaiting();
});
self.addEventListener('activate', (e) => {
e.waitUntil(
caches.keys().then(keys =>
Promise.all(keys.filter(k => k !== CACHE_NAME).map(k => caches.delete(k)))
)
);
self.clients.claim();
});
self.addEventListener('fetch', (e) => {
e.respondWith(
caches.match(e.request).then(response => response || fetch(e.request))
);
});