Migrated visualization to use values calculated from modules to better visualize it
This commit is contained in:
84
script.js
84
script.js
@ -86,18 +86,19 @@ class SwerveDrive {
|
||||
}
|
||||
|
||||
drive(velocityX, velocityY, turnSpeed, maxModuleSpeed, deltaTime = 0.01) {
|
||||
// Update gyro heading first
|
||||
this.updateHeading(turnSpeed, deltaTime);
|
||||
// Store the requested turn speed for later calculation of actual turn speed
|
||||
this.requestedTurnSpeed = turnSpeed;
|
||||
|
||||
// Take in a requested speeds and update every module
|
||||
// Take in a requested speeds and update every module (but don't update heading yet)
|
||||
this.modules.forEach(module =>
|
||||
module.calculateState(velocityX, velocityY, turnSpeed, this.gyroHeading)
|
||||
);
|
||||
|
||||
// If any speeds exceed the max speed, normalize down so we don't effect movement direction
|
||||
const maxCalculated = Math.max(...this.modules.map(m => m.speed), 0);
|
||||
let scale = 1.0;
|
||||
if (maxCalculated > maxModuleSpeed) {
|
||||
const scale = maxModuleSpeed / maxCalculated;
|
||||
scale = maxModuleSpeed / maxCalculated;
|
||||
this.modules.forEach(module => {
|
||||
module.velocity.x *= scale;
|
||||
module.velocity.y *= scale;
|
||||
@ -105,6 +106,38 @@ class SwerveDrive {
|
||||
module.angle = module.velocity.angle();
|
||||
});
|
||||
}
|
||||
|
||||
// Update heading with the actual turn speed (scaled if modules were limited)
|
||||
const actualTurnSpeed = turnSpeed * scale;
|
||||
this.updateHeading(actualTurnSpeed, deltaTime);
|
||||
this.actualTurnSpeed = actualTurnSpeed;
|
||||
}
|
||||
|
||||
getActualVelocity() {
|
||||
// Calculate the actual robot velocity from the average of module velocities
|
||||
// This returns the velocity in robot-relative coordinates
|
||||
if (this.modules.length === 0) return new Vec2D(0, 0);
|
||||
|
||||
let sumX = 0;
|
||||
let sumY = 0;
|
||||
|
||||
// Average the module velocities (they're in robot frame)
|
||||
this.modules.forEach(module => {
|
||||
sumX += module.velocity.x;
|
||||
sumY += module.velocity.y;
|
||||
});
|
||||
|
||||
const avgX = sumX / this.modules.length;
|
||||
const avgY = sumY / this.modules.length;
|
||||
|
||||
// Transform back to field-relative coordinates
|
||||
const cosHeading = Math.cos(this.gyroHeading);
|
||||
const sinHeading = Math.sin(this.gyroHeading);
|
||||
|
||||
const fieldVelX = avgX * cosHeading - avgY * sinHeading;
|
||||
const fieldVelY = avgX * sinHeading + avgY * cosHeading;
|
||||
|
||||
return new Vec2D(fieldVelX, fieldVelY);
|
||||
}
|
||||
}
|
||||
|
||||
@ -271,26 +304,10 @@ const preset16OctBtn = document.getElementById('preset-16oct');
|
||||
* BEGIN LISTENER CODE
|
||||
*/
|
||||
|
||||
|
||||
vxSlider.addEventListener('input', (e) => {
|
||||
vxOutput.textContent = parseFloat(e.target.value);
|
||||
});
|
||||
vxOutput.textContent = parseFloat(vxSlider.value);
|
||||
|
||||
vySlider.addEventListener('input', (e) => {
|
||||
vyOutput.textContent = parseFloat(e.target.value);
|
||||
});
|
||||
vyOutput.textContent = parseFloat(vySlider.value);
|
||||
|
||||
omegaSlider.addEventListener('input', (e) => {
|
||||
omegaOutput.textContent = parseFloat(e.target.value);
|
||||
});
|
||||
omegaOutput.textContent = parseFloat(omegaSlider.value);
|
||||
|
||||
maxSpeedSlider.addEventListener('input', (e) => {
|
||||
maxSpeedOutput.textContent = parseFloat(e.target.value);
|
||||
maxSpeedOutput.textContent = e.target.value;
|
||||
});
|
||||
maxSpeedOutput.textContent = parseFloat(maxSpeedSlider.value);
|
||||
maxSpeedOutput.textContent = maxSpeedSlider.value;
|
||||
|
||||
resetBtn.addEventListener('click', (e) => {
|
||||
vxSlider.value = 0;
|
||||
@ -640,18 +657,27 @@ function animate() {
|
||||
ySpeed = -parseFloat(vySlider.value);
|
||||
turnSpeed = parseFloat(omegaSlider.value);
|
||||
|
||||
// Animate the grid with robot movement
|
||||
let offsetSpeedDivisor = (100 - gridSquareSize <= 0 ? 1 : 100 - gridSquareSize);
|
||||
|
||||
// Update grid offsets based on robot movement
|
||||
xGridOffset = (xGridOffset + (xSpeed / offsetSpeedDivisor)) % gridSquareSize;
|
||||
yGridOffset = (yGridOffset + (ySpeed / offsetSpeedDivisor)) % gridSquareSize;
|
||||
|
||||
// Update module states before drawing the robot
|
||||
// The drive() method will update the gyroHeading internally
|
||||
robot.drive(xSpeed, ySpeed, turnSpeed, parseFloat(maxSpeedSlider.value));
|
||||
updateModuleDisplays(robot);
|
||||
|
||||
// Get the actual robot velocity (after scaling to max module speed) for grid animation
|
||||
const actualVelocity = robot.getActualVelocity();
|
||||
|
||||
|
||||
// Update control outputs with actual speeds
|
||||
vxOutput.textContent = `Requested: ${vxSlider.value} | Actual: ${actualVelocity.x.toFixed(2)}`;
|
||||
vyOutput.textContent = `Requested: ${vySlider.value} | Actual: ${-actualVelocity.y.toFixed(2)}`;
|
||||
omegaOutput.textContent = `Requested: ${omegaSlider.value} | Actual: ${robot.actualTurnSpeed.toFixed(2)}`;
|
||||
|
||||
// Animate the grid
|
||||
let offsetSpeedDivisor = (100 - gridSquareSize <= 0 ? 1 : 100 - gridSquareSize);
|
||||
|
||||
// Update grid offsets based on robot movement
|
||||
xGridOffset = (xGridOffset + (actualVelocity.x / offsetSpeedDivisor)) % gridSquareSize;
|
||||
yGridOffset = (yGridOffset + (actualVelocity.y / offsetSpeedDivisor)) % gridSquareSize;
|
||||
|
||||
// Draw the robot and it's movement. Grid should be oversized so movement
|
||||
// doesn't find the edge of the grid
|
||||
drawGrid(ctx, canvas.width * 2, gridSquareSize, xGridOffset, yGridOffset);
|
||||
|
||||
Reference in New Issue
Block a user